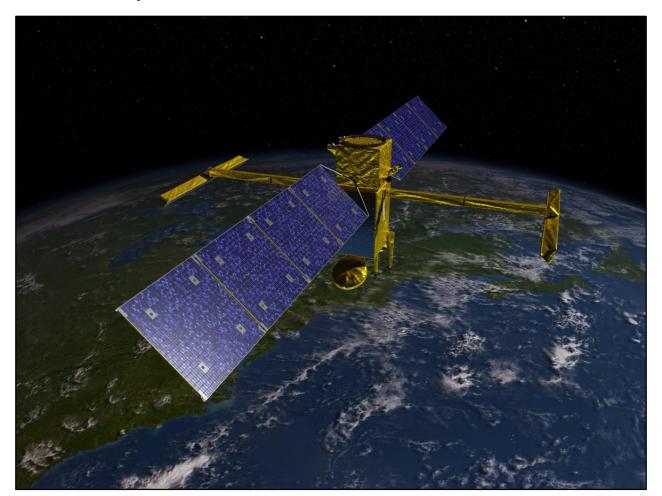


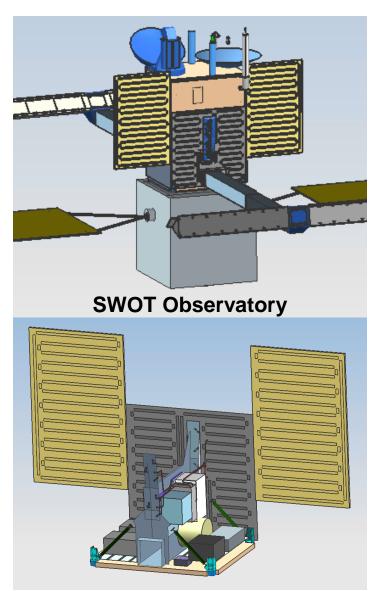
SWOT Loop Heat Pipe Evaporator Joint Conductance Testing

Ben Marshall


NASA Jet Propulsion Laboratory

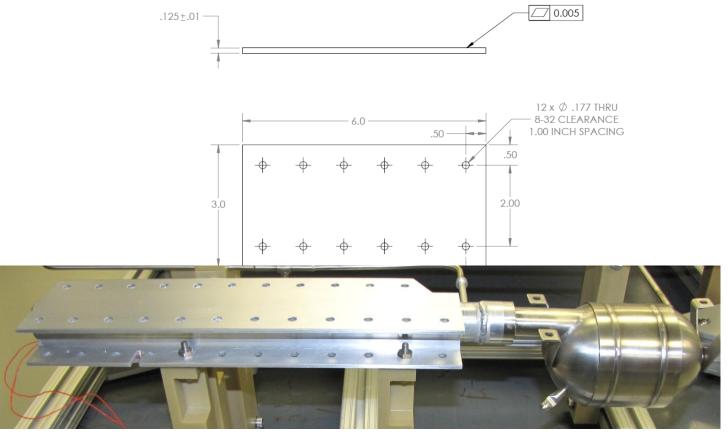
GSFC · 2015

SWOT Mission Background

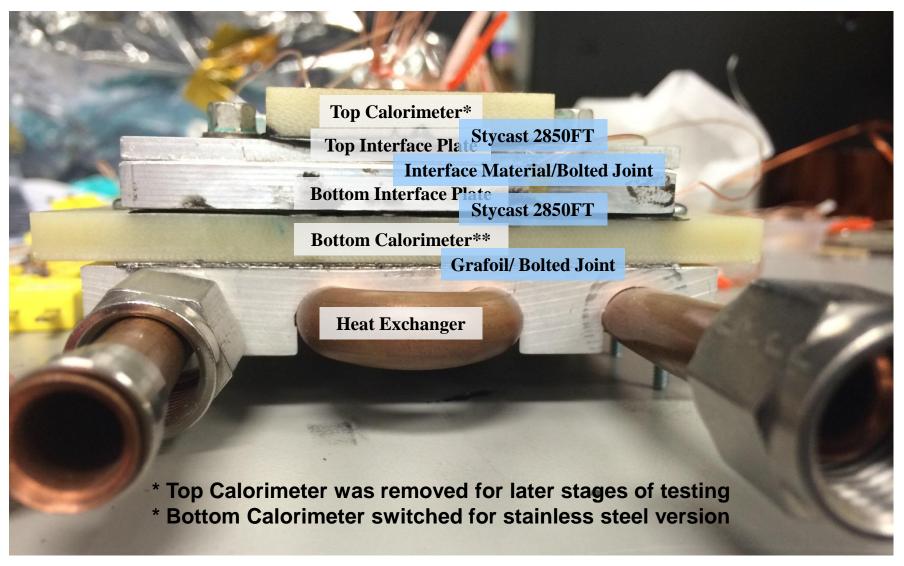

 Surface Water Ocean Topography (SWOT) will map oceans, lakes, and rivers to increase understanding of the global water cycle

SWOT Thermal Design Background

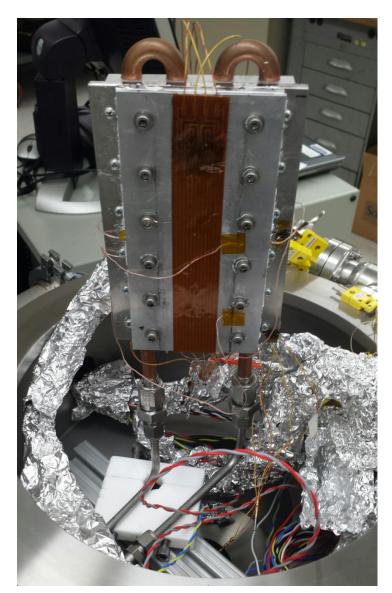
- Primary Instrument is Ka-Band Radar Interferometer (KaRIn)
 - 1100W dissipation split across four thermal pallets
- The main thermal path for each pallet is first through parallel constant conductance heat pipes (CCHPs) and then through a loop heat pipe (LHP) to the radiator
- Lowering thermal resistance at each interface on the path reduces radiator size, required survival power, and cost


Test Objective

- Characterize thermal conductance of a key thermal interface on SWOT Payload using three candidate materials:
 - Dry bolted interface
 - Graphite foil (eGraf 1220)
 - RTV (CV-2948)
- Rate potential options with the following criteria:
 - Heat transport
 - Integration issues (shedding, deformation)
 - Other issues (outgassing, thermal cycling issues, etc.)
- Baseline interface materials for each flat plate interface on the spacecraft


Test Article

- Test article mimics half of the 12" LHP evaporator that is a key interface in the conductive path of the interferometer power dissipation
- Bolt pattern, type, and preload same as in flight (12 #8 bolts)


Test Article

Test Architecture

- Heat exchanger was routed to a chiller and controlled at a temperature necessary to keep interface within desired range (-10°C to 50°C)
- Test article was placed in a bell-jar style vacuum chamber at ≤7x10⁻⁵ Torr
- Aluminum foil shielded thermocouple wire from electromagnetic interference from the vacuum pump
- 1x6" strip heater applied up to 70W of power to top interface

Conductance Calculation Methods

Two methods were used to calculate interface conductance:

- Method 1: Uses applied power, interface ΔT, and interface area
 - Pros: Simple, requires fewer temperature sensors
 - Cons: High Q_{in} uncertainty due to radiation and electrical losses

$$h_{I/F} = \frac{Q_{in}}{A_{I/F} * \Delta T_{I/F}}$$

- Method 2: Uses stainless steel calorimeter plate
 - Pros: Uses well quantified calorimeter properties
 - Cons: Requires more temperature readings

$$h_{I/F} = \frac{k_{cal} * A_{cal} * \Delta T_{cal}}{t_{cal} * A_{I/F} * \Delta T_{I/F}}$$

Method 1 was used to compare between different interface materials, and Method 2 was used as verification

Material Comparison

- Ideal interface material fills gaps between plates with minimum thickness and high conductivity
- Theoretical limit of interface conductance

$$h_{theo} = \frac{k_{I/F}}{t_{I/F}}$$

Material	Туре	Thickness [mil]	k [W/m-K]	h _{theo} [W/m²-K)
Dry	No interface material	N/A	N/A	infinite
eGraf 1220	graphite foil	20	10	20,000
CV-2948	Silicone	7	1.95	11,000

- Moving from dry to Grafoil to CV-2948
 - Decreases voids when properly installed
 - Can get closer to theoretical interface conductance

Approach and Results

- Each interface was tested at various power levels and temperatures
- Observed trend: higher power → higher h
 - Not accounted for by terms included in uncertainty analysis

	Dry	Dry Grafoil CV-2948					Gratoli			8	
Run	Q _{in} [W]	T _{int} [°C]	h _{int} [W/m²-K]	Run	Q _{in} [W]	T _{int} [°C]	h _{int} [W/m²-K]	Run	Q _{in} [W]	T _{int} [°C]	h _{int} [W/m²-K]
1	17.5	34	640	1	38.8	18	6100	1	20.0	19	5000
2	28.6	27	740	2	49.0	44	7600	2	25.0	-6	5800
			690	3	54.1	43	8700	3	40.0	9	6400
							7400*	4	60.0	20	7200
											6100

^{*}Results calculated using calorimeter method were within uncertainty of this value

Uncertainty Analysis

 Uncertainty in the interface conductance value due to each of the following sources was calculated:

Quantity	Sources of Uncertainty
Heat flow across interface	Radiation from top interface, power supply resistance
Interface Area	Manufacturing tolerance
Interface ΔT	Thermocouple error, electromagnetic interference

 To be conservative, all uncertainty was calculated based on lowest power run for each material

Uncertainty due to	Dry [W/m²-K]	Grafoil [W/m²-K]	CV-2948 [W/m²-K]
Q_{in}	70	360	440
A_{int}	10	240	120
T_top	10	1050	670
T_bot	10	1050	670
Total	100	2700	1900

Results/Recommendations

• Dry: $690 \pm 100 \text{ W/m}^2\text{-K}$

Grafoil: 7400 ± 2700 W/m²-K

CV-2948: 6100 ± 1900 W/m²-K

Option	Thermal Performance	Integration/ Removal	Contamination	Suitable for:
Dry	Poor	Simplest	None	Low power density interfaces
Grafoil	Excellent	Relatively Simple	Shedding Concerns	LHP evaporator, other thermally critical interfaces. Seal edges to reduce shedding concerns
CV-2948	Excellent	Potential Voids, Difficult Removal	No Concerns	Thermally critical interfaces for payloads where Grafoil shedding is unacceptable

- Baseline: Grafoil with sealed edges on critical thermal paths, dry bolted interface elsewhere
- Using measured Grafoil I/F conductances yields acceptable predicted on-orbit thermal performance

Issues/Lessons Learned

- CTE mismatch on calorimeter/interface plate and heat exchanger
 - Original calorimeter was G10
 - Repeated temperature cycles caused debonding of Stycast
- Excessive vibration from motor on test cart
- Ice in chiller fluid
 - Water condensation formed in the chiller fluid, which froze and stalled the motor at sub-0°C temperatures
- Motor caused unacceptable instability of thermocouple (TC) readings
 - Largely solved by adding aluminum foil shielding to TC wires

Issues/Lessons Learned

- Multiple heater installations led to bubbles and eventual burnout
- Could not replicate the 200W that the half of the LHP evaporator will see in flight.
 - 1x6" heater strip provided up to 70W
 - Lower ΔT across interface meant higher uncertainty in conductance results
 - Retest only if uncertainty level is deemed unacceptable in the future

Credits

 Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

Special thanks to:

- Matthew Francom (summer student), who initially worked on this round of testing and provided valuable information for this presentation
- Ruwan Somawardhana (SWOT Thermal CogE), who provided advice, guidance, and assistance during Matthew's and my stages of testing